MRRW Bound and Isoperimetric Problems

نویسنده

  • Ashish Sabharwal
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Resistance Bound Via An Isoperimetric Inequality

An isoperimetric upper bound on the resistance is given. As a corollary we resolve two problems, regarding mean commute time on finite graphs and resistance on percolation clusters. Further conjectures are presented.

متن کامل

Simple Average-Case Lower Bounds for Approximate Near-Neighbor from Isoperimetric Inequalities

We prove an Ω(d/ log sw nd ) lower bound for the average-case cell-probe complexity of deterministic or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in ddimensional Hamming space in the cell-probe model with w-bit cells, using a table of size s. This lower bound matches the highest known worst-case cell-probe lower bounds for any static data structure problems...

متن کامل

Notes 5 . 1 : Fourier Transform , MacWillams identities , and LP bound

We will discuss the last and most sophisticated of our (upper) bounds on rate of codes with certain relative distance, namely the first linear programming bound or the first JPL bound due to McEliece, Rodemich, Rumsey, and Welch, 1977 (henceforth, MRRW). This bound is the best known asymptotic upper bound on the rate of a binary code for a significant range of relative distances (which is rough...

متن کامل

An Isoperimetric Theorem for Sequences Generated by Feedback and Feedback-Codes for Unequal Error Protection

We derive an isoperimetric theorem for sequences genenerated by feedback and consider block codes for the binary broadcast channel with two receivers and noiseless feedback. We get an outer bound by applying the isoperimetric theorem on the achievable rates for special cases of these codes with unequal error protection. We get a lower bound with a generalized Varshamov-Gilbert construction.

متن کامل

Isoperimetric Comparisons via Viscosity

Viscosity solutions are suitable notions in the study of nonlinear PDEs justified by estimates established via the maximum principle or the comparison principle. Here we prove that the isoperimetric profile functions of Riemannian manifolds with Ricci lower bound are viscosity supersolutions of some nonlinear differential equations. From these one can derive the isoperimetric inequalities of Lé...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005